PROPAGATION OF AN ELECTROMAGNETIC WAVE
ACROSS A MAGNETIC FIELD IN A PARABOLIC
PLASMA LAYER

V. R. Smilyanskii

The reflection and transmission coefficients are obtained, as well as the coefficient of trans-
formation of an electromagnetic wave into a plasma wave. The problem of choosing the
"physical" path of analytic continuation of the solutions is considered in the case of a wave
equation with two poles.

1, Statement of the Problem, Let a plane wave be propagated along the z axis, while the plasma is
likewise inhomogeneous along the z axis, and the external magnetic field is directed along the y axis. In
this case, the electric field of the wave

E.(z, 1) = E, (2)ei!

can be described by the equation [1]
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Here w is the cyclic frequency; wyy is the gyrofrequency for electrons; wy is the plasma frequency at
the maximum of the layer; v o5 is the effective number of collisions; z,, is the half-thickness of the layer;
¢ is the velocity of light. Below we shall assume that u and s do not depend on z.

The propagation of the ordinary and extraordinary waves in a parabolic layer was considered in the
geometric-optics approximation in [2]. However, in [2], the effect of regions where geometric optics is
violated was not considered. The principal content of the subsequent analysis is precisely the considera-
tion of the effect of poles in the coefficient of Ex on the propagation of the wave, The case of a linear layer
was considered in [3, 4].

2. Asymptotic Solutions. ILet us introduce the new independent variable T = z/zp, in equations (1.1).
Then this system of equations is written as

&°F )
(=) T (= 1)+ (2 — " — 1) B =0 (2.1)
u— (1 —isp LA _ a8
w=lt =g q“( ¢ ) P=q7755

The two regular singular points of the equation (7 = +7;) merge into each other for 7, =0 (8 =0,
w? = wi? + wi?). For 78 =1 (8 = 0, w® = wy’) the regular singular points are absent, which is quite under-
standable physically, since at the points 7 = %1 the plasma density is equal to zero. As far as the value
w = wyy is concerned, this value of w is not isolated in Eq. (1.1), which is associated with the approximation
in which the equation was derived.

As is well known [5], solutions EE?), E,gz) of Eq. (2.1) exist which have the following asymptotic rep-
resentations for fulfillment of the conditions | 7|> |7(| [V pT?|>>1:
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The condition | 7| >|7,| leads to the condition |7,| <1, which restricts the range of frequencies con-
sidered. In particular, for s = 0, the allowable frequency range is

(l)H2<(.!)2 <(.!.)H2 - 20),,2 '

If the incident wave propages from the direction T < 0, then Eéz) for 7 > 0 describes the transmitted
wave, Correspondingly, for 7 < 0 the quantity E,§2) conversely represents the reflected wave and E,g" rep-
resents the incident wave,

In order to determine the amplitude coefficients of reflection (R) and transmission (D) it is necessary
to know the relationship between the asymptotic solutions E}gz) for 7 > 0, and E)éﬂ , E,éz) fort <0 (|7 >
- |74]). This relationship was established in [6] for a certain equation of which (2.1) is a particular case.
Making use of the results of [6], one may write

D =1pymtei= 0T (Yy + 0 — ) I (Y — 0" —1)
R = 157 (g2 cos 2y’ - e7itnn)y D (2.2)
1]=1/4(r2_r1)1 Q+:1’ q-‘=0
Here I" is a gamma function; q, corresponds to bypassing of the singular points T = +74 (for transition

from 7 > 0to 7 < 0) along the upper half plane of the complex T plane; g corresponds to bypassing of the
singular points along the lower half plane; p' is determined by the character of the singular points 7 =+ 7.

3. Determination of ', The solutions y,, y, of Eq. (2.1) have the following form [5] in the neighbor-
hood of the angular points 7 = £7:

yr= (T F 1) D) Co (1) (T 1)

v=0

yo =Ty ln (tF 1) + X du (1) (T F 1) (3.1)

v=0

Co=1, do=—1, b=—(v2—1)[p(v*—1)+ql/2%,
= v—6 (v>6)
G2 =Cv—=1NV=2)+ (=D [p:—1)+4ql, g&-=4py

g3 (V) =47 [p (vt —1) 4 4],
ga=2[pBv* =1 +4ql, gs(¥)=0p

2 ' 0 (v<<6)
1 N\ =
() = — wE—Tn Zk Ci8: (v), ko= { (v=2,3,...)

Here b is determined by the Frobenius method [5]. As is easily demonstrated from recurrent rela-
tionships, the coefficient Cy is an even function of T4 if v is even, and an odd function if v is odd, As is
evident from (3.1), the field Eyx at the actual point of the pole (T = 0) is finite. Making use of the procedure
developed in [6], we have

Pt i 2B+ VBRBE—% 3.2
W= Ind4—, 8= s e VEG D (3.2)

B = {4:!1217 [yl lf;: ][ ¢=o}2

Here [ is an integer which is to be determined. If the equation has only one regular singular point

(or none at all), then y' = 1/4(p1 — Py) in accordance with [6], where p, , is the solution of the defining equa-
tions for the case considered. For Eq. (2.1) we have ’

Beomn) = Yo VI +42,208%%,  pepmn = s (3.3)
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using the method indicated at the points 7§ =0, 72 =1,

The integer [ should be chosen in such a way that u' from (3.2) coincides with ' from (3.3) for
73 =0, 1. In order to determine I we choose 7§ =1, since for such a value of the parameter 7} the solu-
tions of Eq. (2.1) are single-valued and analytic throughout the entire domain |z | < = (see Sec. 5). Let us
confirm directly the fact that u' from (3.2) for 72 =1 and 4’ from (3.3) for 7} =1 coincide if I =1, Thus,
in (2.3), one should take I =1.

If s = 0, then 7, is either real or purely imaginary (Re T, = 0). Therefore, from the properties of
symmetry relative to C,, (7) indicated above, and likewise from (3.1}, (3.2), it follows that for s =0, g = 0.

Let s =0and 0 = 8 < 4. Then [see (3.2)]

[8] =1, O0<Carg §<C2m, YaC ' <Y,

i.e., for the indicated variation of g8 the variable under the logarithm sign bypasses the branching point of
the logarithm and the given branch goes over into another. Therefore, for g8 > 4 one should take Ind +i27.
Let s =0, 8§ = 4. In this case,

arg 6 =0, p =Y, +ivp H>0

Making use of the recurrent relationship for C,, , it may be shown that regardless of what side 7 —0
takes place from,

lim 2= =2 yl(f—o) Za limM 2, (k-+1)ay

0 dt
k ok i ImPy 2
o = (=" (2% e+ O] [0 — ) v — 2 — (=2 ]
=3
and, consequently, for u' from (3.2) there exists
Inn p' = lim p'
-0 T—~+0

At the same time,

Y, < Rep’' LY, for s=0 (=14

On the other hand, for a fairly thick layer the expression from (3.3) yields

Bepmpy = 0520/ ¢ S>1

From this it follows that the function ' (7}) has a discontinuity at the point 7} = 0 (s = 0, w? = wy +
w®), which can be eliminated. This can evidently be explained by the fact that the original equation (1.1)
was derived without consideration of space dispersion, Of course, there is no basis for expecting an actual
step discontinuity R '), D') at the point 7§ =

4. Obtaining R, D, and the Transformation Coefficient. Let s = 0. In this case,

M=% (%= 0.257,, {co ) {02 — 05> — o¥)

Assume additionally that 0 = 8 < 4, Then u' is real. For this case we have from (2.2) the following
results in accordance with Eq. (8.344.2) in [7]:
e—zﬂ:x

- 4.1
12 2 cos mp’ - 2% | ¢ B 4.1)

|RJ? = (g42 cos 2ap’ 4 e=<)%| D!

A simple check of the derived formulas shows that for ¥, = u' < ¥, we have |R|? + |D|? =1 for by-
pass along the lower half plane, and |R |2 + |D |2 < 1 for bypass along the upper plane, |R|* + |[D |2 =1 hold-
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ing in both cases solely for u' = 1/4. From this it follows that the physically correct result yields a bypass
along the upper half plane.* Therefore, the correct expression for R and D in the general case is

D = Yjyutetm @UL (g + 0 — M) T (Y — p' —1)
R = ¢it5m (2c08 2mp -+ e"270) D 4.2)

Let us likewise consider the case s = 0, 8 = 4. In this case we have

B 1 ('LIJ . %) g anx
| D =~ (¢ +#) [ch2mp — ch 2nx]

| R|? = (e — 2ch 2ay)? | D |

on the basis of Egs. (8.331) and (8.322.1) in [T7].
If s =0, n = 0, then Eq. (4.2) can be simplified substantially; specifically,

_t
2cosap’ ’

D= R = —i(2cos2ap” +1)D

If in (4.1) we formally place 27u' =0 @' = 1/4), then the dependence of the derived formal expressions-
for [R|?, D on the frequency w is exactly the same as it is in the case of normal incidence of an electro-
magnetic wave on a parabolic layer ofisotropic plasma (see [1], Sec. 17). Therefore, the general character of
this dependence for |R | and |D {? is not altered substantially even for small [cos27mu'| (1 e., for small
pr= Y% > 0.

However, the substantial difference from the case of normal incidence of a parabolic layer of iso-
tropic plasma is manifested here in the fact that the coefficient of transformation of an electromagnetic
wave into a plasma wave |[F|> =1 — |R|? — |D|? (see below) is not equal to zero.

As is evident from (3.2), the quantity 8 (and thus ' also) will, in general, be a complex function of
w?, we?, Wik, Zm’, ¢*. However, under specified conditions the expression for g may be simplified sub-
stantially. Let us make use of the expansion

(1adys ] 40 = (v F 1)!l 4+ 6C,(-E W) F 1) + ... 4.3)

Let s =0, 7 = 0. Then the second term of the series in (4.3) may be neglected in comparison with the
first term, if

o’ << op® + 0° —3-( ° )2

(DHZ

In this case,

— mz_mH2 2 oz,00 4
e )( o) (4.4)

If, for example, ""H < ‘*’k and *4(c/ szm)2 10, then Eq. (4.4) may be used throughout the entire in-
terval of allowed frequencies sz = w? < wi t 2wi? (see Sec. 2).

From (4.2) it follows that the phase shift ¢ between the reflected and infinite waves at the beginning
of the layer (v =-1) is

¢=—Imnlnp)+ Re}Yp—argR (4.5)

From (4.5) we have the following result in accordance with Eq. (8.362.1) from [7]:

d ]
At = % ~ 7o [Im(nln p) + arg (2 cos 2u’ 4- e~41) - x Ren] —

_ pap v 1T Bt kc]
ZIm{p, s k%,xk +L0.577215+ - 2 }
S=Ya—M  Ne=(o+h)? —

*It is of inferest that in [6] the physically correct result was obtained for bypass along the lower half plane.
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The quantity |F|? =1 — |R|*|D|? for s = 0 characterizes the relative fraction of energy which is ab-
sorbed in the region of the pole, In the region of the pole (1 —v —u =0, s = 0) transformation of the electro-
magnetic wave into a plasma wave occurs (see [1, 8]) and, therefore, for waves having a small amplitude
the loss of energy in the region of the pole for s = 0 may be explained by transformation,

On the other hand, the pole itself develops if space dispersion is neglected and, consequently, in the
limiting case it reflects the influence of the discarded terms. Therefore, for s = 0 the quantity |F|> may be
treated as the coefficient of transformation of an electromagnetic wave into a plasma wave at small values
of the parameter g T2 which characterizes the space dispersion. In other words,

|Flig=1imL for By —0

where L is the transformation coefficient [i.e. IFIS_0 is the first term of the expansion of L(gy? into a
series in g7?%]. Unlike [8] (where a different law for the variation of the electron density is also taken), the
transformation coefficient here can be determined from a second-order equation.

The treatment of the quantity |F|? presented above has been considered in various aspects in [9, 11].

Ifs=0,0=<g <4, then

[FP = | cos 2mp’ | — 2e ¥ cog? 2’
- ch 2% — [ cos 2np’ | 4.6)

(Here cos 27u' < 0.). The dependence of |F|? on w?/wy? which is given in (4.6) for (¢/zywy?) = 20, wi? =
5wg?, is displayed in Fig. 1.

In the given paper the choice of the path of analytic continuation of the solutions is achieved from the
condition governing the energy dissipation (JR|* + |[D|? =< 1). Such an approach in the case of one simple pole
has already been used previously (for example, in [9, 10]). However, the case of two poles has certain spe-
cific peculiarities. Therefore, it is expedient to discuss it in greater detail (see Sec. 5).

5. On the Choice of the "Physical™ Path of Analytic Continuation of the Solution. Equation (2.1) is a
particular case of the equation

42 d Qa2? Q =
E_zg + ( le 212 +alz) dz + [(Zﬁ —_ 212)2 + z? -—3212 + @ + bzz] y= O (51)

considered in [6], where @, Q;, Qs, @, a4, and b are arbitrary constants.

The solutions of Eq. (5.1) are considered in the present paper and in [6] basically in the domain
|z4| < |z| < ]zm| < =. In principle, more than two paths for performing the analytic continuation of these
solutions from the positive half axis onto the negative one are possible in the z plane (for example, between
the poles z = +z, also). Therefore, let us consider the question of which paths, in general, of analytic con-
tinuation may lead to a physically correct result. We shall conduct the consideration in parallel for the pres-
ent paper and for [6]. Hereafter we shall add the letter A to the numbers of the equations from [6] [for
example, (A,1.2)].

As is well known [1], consideration of the space dispersion leads to fourth-order systems instead of
equations (1.1), (A.1.2); the coefficients of these systems (and, therefore, the solutions) are analytic and
single-valued in the neighborhood of the zeros of & = [(1 —is)? ~u— (1 — is)v], &'.
The equations (1.1), (A.1.2) are derived from equivalent systems (in the domain
considered) of fourth-order equations if the small parameter BTZ in the senior
Jo* 1 Fi* ] derivatives is placed equal to zero (i.e., if the equations are degenerate in a definite
sense).

2

/ The effect of the discarded terms is especially great in the region where the

coefficient of the second derivative is small (i.e., near the zeros of §, €'). There-

, \ fore, in general, the solutions of the degenerate equations on the real axis in the

¢ / \ ; neighborhood of the zeros of §, &' (if the zeros are situated on or near the real axis)
\ 3 may not correspond to the actual physical picture, i.e., they may not be physical.

LA ] This is indicated by the ambiguity of the solutions and their divergence at the zeros.

In this case, the physical solutions in the neighborhood of the zeros of 6§, €' may be

Fig. 1 obtained only by means of a nondegenerate fourth-order system.

=00
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A reliable exception is the case when the solutions of the degenerate equation are unique and analytic
in the neighborhood of the zeros of §,e’', notwithstanding the presence of the pole. [Note that the solutions of
(A.2.1) (z; = 0) are unique and analytic, that is, they are physical, throughout the entire domain lz] <, in-
cluding at the zero of £'(z = 0)., This derives from (A.2.2).] In particular, G(i’Z) = const for z — 0. The in-
fluence of the discarded term is slight here even in the neighborhood of the zero of £¢', This is likewise in-
dicated by the absence of transformations ([R|* + [DJ? =1, see Sec. 2).

Consequently, the correct way of performing analytic continuation of the solutions of Egs. (1.1),
(A.1.2) (taken far from the zeros of 6 ,¢') from the positive z half axis to the negative half axis in this case
must not necessarily coincide with the real axis (or be congruent with it via continuous deformation) in the
neighborhood of the zeros of &, £¢'. Moreover, it is natural to expect that, in the case considered, the by~
passing of the zeros along a path situated sufficiently far from them in the complex plane @i.e., where the
influence of the discarded terms is small) is precisely what yields a physically correct result. It would be
desirable to indicate a similar device in the quasiclassical method [12].)

It is precisely such waves that were used in the given work and in [6]. In these cases the path between
the poles z = +z, (i.e., between the zeros of §, €') will not be simple, since for specific values of the param-
eters in (2.1) and (A.3.1) the two poles (the zeros of §, £') are close and even merge into one.

Note likewise that in order to determine the integer number ! included in pu', parameters were chosen
in Egs. (2.1) and (A.3.1) such that the solutions of these equations were unique and analytic in the entire
domain |z| < «, After all that has been said above, this does not require clarification.
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